Поиск по сайту

<body bgcolor="#ffffff" text="#000000"> <a href="http://ww17.4joomla.org/?fp=JMhAGvQ4Sd%2BS3LZsnpMbP9j3gIk84W6itSX%2FD3asnMEXrNySTq9tScX8E1Fn9sZQJYYieZ%2ByBA3n4SHM%2BJkgdaxp9XZN20jbkNNsLNrcxK1TYHAqul1utSCu%2FftfOSbDGHDLyaJrex1yigk6swa78rQX%2BgopAUyIwJ%2F4ZJ9UZ5k%3D&prvtof=r3qcaWNMgKKwFGa7%2FucrJ6W7%2BlCGrsQPl%2FMnHv7fJOQ%3D&poru=L8ZDXft2uV0isM8FIaaSRvsIssqVI1vS%2BW5Qtv%2FpW1ni5OL8Fya419ht2crZh9dpWuF7QYvUAbp5ny3dfGZgEx4%2F56ngipXorXaNj%2F3rYNaTqvmOB2f5vsOKp9GzsXcX&">Click here to proceed</a>. </body>

Физической основой ультразвуковой дефектоскопии является свойство ультразвуковых волн отражаться от несплошностей. Действие приборов ультразвукового контроля основано на посылке ультразвуковых импульсов и регистрации отраженных акустических эхо-сигналов или ослабленных сигналов (в случае нахождения приемника сигналов в акустической тени, созданной дефектом). Посылка ультразвуковых импульсов и прием ультразвуковых сигналов производится пьезоэлементами (пьезоэлектрическими преобразователями), преобразующими переменное электрическое поле в акустическое поле и наоборот.

 

Чтобы ввести ультразвуковые волны в контролируемое изделие, между пьезопреобразователем-искателем и изделием необходимо обеспечить акустический контакт. Существуют два метода обеспечения такого контакта: контактный и погружной (иммерсионный). При контактном методе поверхность изделия смазывают минеральным маслом или глицерином, солидолом, специальной магнитной жидкостью, водой, гелем и т.д. При иммерсионном методе контролируемое изделие и преобразователи находятся в среде или потоке жидкости. При этом между преобразователем и контролируемым изделием непосредственный контакт отсутствует, ввод ультразвуковых колебаний осуществляется через слой жидкости. При проведении контроля в технологическом процессе в качестве иммерсионной жидкости обычно используется вода.

В зависимости от типа дефекта ввод ультразвуковых волн осуществляется по нормали или под определенным углом к поверхности изделия. Во внутритрубных дефектоскопах преобразователи устанавливаются в гибком носителе, обеспечивающем фиксированный отступ между излучающей поверхностью преобразователя и внутренней поверхностью трубопровода.

Маркерная система дефектоскопа и система определения местной вертикали построены аналогично системам внутритрубного профилемера. Внешние маркерные передатчики располагаются в точно определенных местах вдоль трассы нефтепровода, благодаря чему точность определения координат дефектов достигает ± (20 - 25) см.

Данные, непрерывно поступающие от ультразвуковых датчиков, записываются одновременно с информацией одометрических колес, местной вертикали, временными метками и поступающими сигналами маркеров, благодаря чему при обработке данных осуществляется привязка информации к местности и окружности трубы.

Ультразвуковой внутритрубный дефектоскоп для прямого высокоточного измерения толщины стенки трубы

Ультразвуковой дефектоскоп типа WM (Wall thickness Measurement – измерение толщины стенки) представляет собой автономное устройство, предназначенное для обследования трубопроводов с целью определения дефектов стенки трубы методом ультразвуковой толщинометрии радиально установленными ультразвуковыми датчиками. Наличие и расположение дефекта в стенке трубы определяется по времени прихода ультразвуковых сигналов, отраженных от внутренней и наружной поверхности или неоднородности внутри стенки трубы, позволяя тем самым определять кроме наружных и внутренних потерь металла различного рода несплошности в металле трубы, такие как расслоения, шлаковые и иные включения. В дефектоскопах используется ультразвуковой принцип измерения толщины, основанный на акустическом эхо-импульсном зондировании стенки трубопровода с использованием ультразвуковых иммерсионных преобразователей совмещенного типа.

Рассмотрим принципиальную схему работы внутритрубного ультразвукового прибора-толщиномера.

Принцип работы ультразвукового толщиномера состоит в измерении временных интервалов между зондирующим импульсом и импульсами, отраженными от внутренней и внешней поверхностей стенки трубопровода. Временной интервал между зондирующим импульсом и первым отраженным импульсом соответствует расстоянию (отступу) между датчиком и внутренней поверхностью стенки трубы. Временной интервал между первым и вторым отраженными импульсами соответствует толщине стенки.

Вне зависимости от некоторых технических отличий все типы подобных устройств несут на своей поверхности ультразвуковые датчики, работающие по иммерсионному методу (методу погружения), суть которого заключается в том, что пространство между датчиком и исследуемым объектом полностью заполнено жидкостью (нефтью или нефтепродуктом).

При контроле толщины стенки трубы и контроле дефектов, параллельных стенке трубы (расслоений, неметаллических включений), ультразвуковые колебания вводятся по нормали к поверхности трубы. На рис. 34 приведена схема установки пьезоэлектрического преобразователя.

Рис. 34. Схема установки пьезоэлектрического преобразователя в упругом носителе внутритрубного дефектоскопа при радиальном прозвучивании стенки трубопровода:

ПЭП – пьезоэлектрический преобразователь; Т – трубопровод; SO – значение отступа;

Н – носитель датчиков (ПЭП)

Ультразвуковые датчики устанавливаются в держателе прибора так, чтобы они находились перпендикулярно стенке трубы. После излучении датчиком ультразвукового импульса происходит отражение ультразвукового сигнала сначала от внутренней, а затем от внешней стенки трубы. Отраженные сигналы фиксируются ультразвуковым датчиком.

Измерение толщины стенки трубы или расстояния до несплошности производится путем измерения времени прохождения зондирующего (т.е. излучаемого в изделие) импульса от наружной до внутренней поверхности трубы или от наружной поверхности до несплошности и отраженного импульса в обратном направлении. При известной скорости распространения ультразвука в стали (5850 м/с для продольных волн) указанный временной промежуток пропорционален двойной толщине стенки трубопровода или двойному расстоянию до дефекта.

В случае наружной коррозии время прохождения сигнала в стенке стальной трубы уменьшается, что дает непосредственно количественную меру потери металла. В случае внутренней коррозии увеличивается время прохождения сигнала в нефти.

Кроме обнаружения внутренней и внешней потерь металла, данный метод позволяет обнаружить и измерить другие типы дефектов, такие как расслоения, включения, царапины, надрезы, задиры и вмятины, а также их комбинации. Ультразвуковой сигнал отражается также и от различных неоднородностей в толще металла стенки трубы, позволяя тем самым определять, кроме наружных или внутренних потерь металла различного рода, несплошности в металле трубы (рис. 35). 

Рис. 35. Пример обнаружения расслоения

Для того, чтобы избежать ложных замеров толщины стенки, что может быть вызвано переотражениями ультразвукового сигнала, системой электроники прибора фиксируются отраженные импульсы через определенный временной промежуток – так называемое время задержки триггерного сигнала.

После того, как от внутренней поверхности стенки трубы принято ультразвуковое эхо, прием прерывается для того, чтобы подавить многократные отражения. Во время задержки триггерного сигнала ультразвуковые эхо-сигналы не принимаются, поскольку они могут быть ложно интерпретированы как значения толщины стенки. В этом случае производится замер первого эхо-сигнала после окончания времени запаздывания триггерного сигнала (обычно, это второе по счету эхо от внешней поверхности стенки). Замеренное значение при этом показывает удвоенную толщину стенки.

Записываемые данные представляют собою совокупность ультразвуковых измерений толщины стенки трубы и расстояния от датчиков до внутренней стенки трубы, показаний одометрической информации (информации о пройденном прибором расстоянии), давлении окружающей среды, температуре и т.п.

Ультразвуковой дефектоскоп типа WM (рис. 36) состоит из секций –стальных цилиндрических герметичных корпусов (с расположенной внутри электроникой, накопителями информации и батареями) и носителя датчиков, связанных между собой при помощи карданных соединений и кабелей. Количество секций и состав каждой секции определяются возможностью компоновки электроники и батарей в ограниченном объеме корпуса, габаритные размеры которого должны обеспечить контроль трубопровода с определенным проходным сечением и минимальным радиусом поворота трубы. Для трубопроводов диаметром 1220/1020 мм дефектоскоп выполнен двухсекционным, для трубопроводов диаметром 820 мм и менее он состоит из трех-пяти секций. В передней части ведущей секции установлен бампер, закрывающий антенну приемопередатчика, находящуюся в защитном кожухе.

Каждая секция и носитель датчиков снабжены полиуретановыми манжетами, предназначенными для центрирования и обеспечения движения прибора по трубопроводу потоком перекачиваемого продукта.

На каждом герметичном корпусе установлены также конические манжеты, служащие для предотвращения застревания прибора в тройниках, не оборудованных предохранительными решетками. В задней части секции электроники на подпружиненных рычагах установлены два одометрических колеса, предназначенных для получения информации о пройденном расстоянии.

Для привязки к угловому положению относительно продольной оси трубопровода дефектоскоп имеет в своем составе маятниковую систему, позволяющую учесть вращение дефектоскопа при движении. 

Рис. 36. Ультразвуковые дефектоскопы типа WM

Носитель датчиков состоит из полиуретановых полозов коробчатого сечения с установленными в них ультразвуковыми датчиками. Полозы соединены между собой плоскими пружинами, благодаря которым они плотно прилегают к внутренней поверхности трубы.

Датчики соединены с модулем электроники специальными кабелями с герморазъемами. Для того, чтобы на датчиках не откладывались парафино-смолистые отложения, конструкцией прибора предусмотрен проток перекачиваемого продукта через каналы полозов.

Минимальное проходное сечение трубопровода, необходимое для пропуска ультразвукового дефектоскопа, составляет 85 %, а минимальный радиус поворота на 90° цельнотянутого колена трубы, проходимый прибором, составляет 1,5 Dн.

В качестве источника электропитания во внутритрубных инспекционных приборах используются литиевые батареи как имеющие самую высокую емкость на единицу объема.

Количество датчиков на дефектоскопе предусмотрено такое, чтобы обеспечить контроль всей внутренней окружности трубы смыкающимися пятнами ультразвуковых лучей (для дефектоскопа 1220 мм, например, количество датчиков - 448). Вдоль оси трубы опрос ведется через 3,3 мм при скорости движения прибора 1 м/с. Таким образом, обеспечивается толщинометрия всей внутренней поверхности трубы за один прогон прибора. Информация от каждого датчика обрабатывается бортовыми компьютерами, сжимается и записывается в накопителях информации. 

Ультразвуковой дефектоскоп CD (CDL, CDC, CDS) для обнаружения продольных, поперечных, наклонных трещин

Ультразвуковой дефектоскоп CD предназначен для внутритрубного ультразвукового обследования магистральных трубопроводов с целью обнаружения продольных и поперечных стресс-коррозионных трещин стенок трубопровода, в том числе в продольных и поперечных сварных швах (рис. 37).

Рис. 37. Ультразвуковой дефектоскоп CD (CDL, CDC, CDS) для обнаружения

продольных, поперечных, наклонных трещин

В дефектоскопах используется метод, основанный на акустическом эхо-импульсном зондировании стенки трубопровода с использованием ультразвуковых иммерсионных преобразователей совмещенного типа с наклонным вводом луча в стенку трубопровода.

Метод состоит в регистрации и измерении амплитуды отраженных от трещин сигналов и временных интервалов между зондирующим импульсом, импульсом, отраженным от внутренней стенки трубопровода, и импульсом от трещины.

Излученная датчиком ультразвуковая волна входит в металл под углом 17° к перпендикуляру к поверхности и распространяется в металле под углом 45°, при этом обеспечивается наилучшее отражение сигнала от трещины. Отраженные от трещины сигналы принимаются этим же датчиком. Для повышения вероятности обнаружения дефектов облучение производится с двух сторон, сигнал от дефекта может быть принят 2-мя или 3-мя датчиками с каждой стороны. В процессе интерпретации такие сигналы от разных датчиков совмещаются, а по характеристикам принятых сигналов вырабатывается заключение о свойствах дефекта.

Наиболее приемлемым методом определения трещиноподобных дефектов, который в основном и используется при разработке дефектоскопов, является теневой с использованием наклонно расположенных ультразвуковых датчиков.

Ультразвуковая волна, распространяющаяся в стенке трубы, отражается встречающимися трещинами и частично рассеивается. Наибольший отраженный сигнал приходит от трещин, расположенных перпендикулярно направлению распространения волны. С увеличением угла между направлением распространения луча и трещиной амплитуда отраженного луча, приходящего к датчику, уменьшается. Поэтому для обнаружения разнонаправленных трещин необходимо иметь как минимум две системы датчиков, расположенных взаимно перпендикулярно.

На вход ультразвукового датчика приходит очень сложный отраженный сигнал, из которого необходимо извлечь полезную информацию о наличии трещин и их параметрах. Это достигается обработкой приходящего сигнала электронными и программными средствами на борту прибора-дефектоскопа.

Вышеописанный принцип обнаружения трещин реализован во внутритрубном ультразвуковом дефектоскопе типа CD.

Носитель датчиков ультразвукового дефектоскопа CD сконструирован таким образом, чтобы за один пропуск сканировался весь периметр трубы.

Для обнаружения трещин используется большое количество датчиков, расположенных под углом к осевой плоскости трубы, половина которых сканирует в одном направлении, половина датчиков - в другом. Количество датчиков подобрано таким, что каждый следующий датчик сдвинут на половину диаметра датчика в сторону прозвучивания, кроме того, сканирование осуществляется в обе стороны.

При этом обеспечивается избыточное сканирование всех участков стенки трубы, благодаря чему осуществляется более надежное обнаружение трещин на фоне возможных ложных сигналов из-за изменений геометрии стенки трубы. Кроме того, часть датчиков расположена перпендикулярно стенке трубы для осуществления толщинометрии. Это необходимо для измерения реальной толщины стенки, а также для обнаружения поперечных швов и арматуры, что в свою очередь необходимо для точной привязки дефектов. В реальности количество датчиков, например, для прибора (для труб диаметром 720 мм), составляет 480 датчиков, расположенных на 16 полозах, при этом 240 датчиков сканируют по часовой стрелке, 240 – против часовой стрелки. На каждом полозе установлены два датчика для осуществления толщинометрии.

Датчики установлены на полиуретановых полозах, из которых монтируется очень гибкий носитель, обеспечивающий неизменное расстояние между датчиками и внутренней поверхностью трубы, а также поддерживается необходимый угол падения ультразвукового луча.

Для обнаружения продольных трещин используется носитель с поперечным наклоном датчиков. Для обнаружения поперечных трещин используется носитель с продольным наклоном датчиков.

Вследствие необходимости использования большого количества датчиков, а также сложных алгоритмов обработки информации резко возрастают объем электроники, потребляемая мощность и, как следствие, количество секций и длина внутритрубного дефектоскопа.

Внутритрубный дефектоскоп типа CD состоит из нескольких стальных герметичных секций (для диаметра 1020/1220 мм - из 2-х, 820 - 426 мм - из 3-х) и носителя датчиков. На ведущей (батарейной) секции установлен приемопередатчик и три одометрических колеса, два из которых работают в системе измерения расстояния, а третий участвует в назначении частоты опросов датчиков. При вращении этого колеса, независимо от скорости движения (в диапазоне скоростей от 0,25 до 1 м/с), через каждые 2-3 мм дистанции вырабатывается сигнал на запуск ультразвуковых систем. При скорости более 1 м/с ультразвуковые системы запускаются с постоянной частотой от встроенного генератора, что приводит к уменьшению разрешающей способности прибора, а при обследовании поперечных дефектов и к необнаружению части дефектов.

В других секциях расположены ультразвуковые блоки, а также модули электроники и записи данных. Прибор снабжен программируемой микропроцессорной системой управления, маркерным приемопередатчиком и маятниковой системой вертикали. Прибор обнаруживает дефекты минимальной длины 50 мм, минимальной глубины 1,5 мм.

Комбинированный дефектоскоп для прямого измерения толщины стенки трубы и обнаружения трещин на ранней стадии (WM&CD)

Ультразвуковой комбинированный дефектоскоп предназначен для внутритрубного ультразвукового обследования магистральных трубопроводов с целью измерения остаточной толщины стенки и обнаружения продольных или поперечных трещин, в том числе в поперечных и продольных сварных швах (рис. 38).

Рис. 38. Комбинированный дефектоскоп для прямого высокоточного измерения толщины стенки трубы и обнаружения трещин на ранней стадии

Дефектоскоп позволяет осуществлять как комбинированное (одновременное), так и раздельное обследование трубопроводов, при котором проводится только измерение остаточной толщины стенки (вариант толщиномера) или только выявление трещин, продольных или поперечных (вариант детектора трещин).

В дефектоскопах используется метод, основанный на акустическом эхо-импульсном зондировании стенки трубопровода с использованием ультразвуковых иммерсионных преобразователей совмещенного типа с перпендикулярным (толщиномер) и наклонным (детектор трещин) вводом луча в стенку трубопровода.

Магнитные внутритрубные дефектоскопы

Магнитный контроль основан на индикации эффекта взаимодействия магнитного поля с контролируемым объектом, изготовленным из ферромагнитного материала. Если в намагниченном металле встречаются области с дефектами-несплошностями, магнитная проницаемость которых отличается от магнитной проницаемости основного металла, появляются магнитные поля рассеяния, выходящие наружу. Индикация этих полей позволяет получить информацию о дефектах.

Магнитный контроль проводится в приложенном или остаточном магнитном поле. Выбор направления магнитного поля, а следовательно, и способа намагничивания зависит от ориентации дефектов. Магнитное поле должно быть перпендикулярно направлению дефекта.

В магнитных приборах, используемых при проведении внутритрубной дефектоскопии, индикация магнитных полей рассеяния осуществляется специальными магниточувствительными датчиками, установленными на упругих носителях и сканирующими внутреннюю поверхность трубопровода. Показания датчиков преобразуются в электрические сигналы, регистрируемые запоминающей системой прибора.

Намагничивание до полного насыщения стенки трубопровода осуществляется мощными постоянными магнитами, установленными на корпусе внутритрубного прибора. Замыкание магнитного потока на стенку трубы производится через гибкие магнитопроводы.

Современные магнитные приборы высокого разрешения способны выявлять как дефекты потери металла, вызывающие уменьшение толщины стенки трубопровода, так и дефекты в сварных швах, определять, на какой поверхности находятся дефекты потери металла - наружной или внутренней. Размеры дефектов определяются по характеристикам магнитных полей рассеяния при помощи специально разработанных математических моделей.

Угловое положение зарегистрированных особенностей трубопровода определяется с помощью маятниковой системы. Система измерения пройденного расстояния основана на регистрации импульсов одометрических колес.

Привязка дефектов производится к ближайшим точкам-ориентирам (маркерным пунктам, задвижкам, вантузам), а также к ближайшим поперечным кольцевым сварным швам.

Магнитный дефектоскоп представляет собой автономную компьютерную диагностическую систему для обследования трубопроводов с использованием метода магнитной дефектоскопии. Магнитная система, входящая в состав дефектоскопа, осуществляет намагничивание участка трубопровода с помощью постоянных магнитов и гибких проволочных щеток.

Наличие трещин или дефектов, связанных с потерей металла (коррозия, задиры), приводит к изменению величины и распределения магнитной индукции вблизи дефекта. Для измерения магнитной индукции служат датчики высокого и сверхвысокого разрешения, расположенные между щетками магнитной системы.

Магнитный  дефектоскоп  высокого  и  сверхвысокого разрешения с продольным намагничиванием (MFL)

Физическая сущность метода магнитной дефектоскопии основана на регистрации рассеяния магнитного потока (MFL – Magnetic Flux Leakage).

Магнитное поле, вектор которого направлен по оси трубопровода, создается мощными магнитами, установленными на корпусе передней (магнитной) секции снаряда. Замыкание магнитного контура между полюсами магнитов и стенкой трубопровода осуществляется через гибкие магнитопроводы, выполненные в виде стальных щеток.

Для того чтобы обеспечить беспрепятственное прохождение прибора через сужения, датчики устанавливаются на упругих носителях, а сами носители закреплены на «плавающих» кольцах, которые могут перемещаться относительно корпуса прибора в радиальном направлении, приспосабливаясь к геометрии трубопровода (например, в зоне односторонней вмятины).

Для трубопроводов диаметром 1020 мм и 1220 мм прибор выполняется двухсекционным, для трубопроводов меньших диаметров – с количеством секций три и более.

Секции соединены между собой буксировочными тягами с универсальными шарнирами (рис. 39).

Рис. 39. Магнитный дефектоскоп MFL.

Обнаружение дефектов поперечных швов и питтингов

Передняя секция удерживается в центре трубы с помощью щеток магнитного контура, а также поддерживающих колес, расположенных в передней части корпуса равномерно по окружности, которые поджимаются к стенке трубы с помощью пружин. Спереди и сзади секции расположены манжеты, предназначенные для приведения в движение дефектоскопа. Вторая секция дефектоскопа содержит систему обработки и записи данных, батареи. На внешней части корпуса расположены: второе кольцо датчиков, датчики температуры и дифференциального давления, элементы внешней электроники. На передней и задней частях корпуса расположены поддерживающие колеса, предназначенные для центрирования прибора в трубе, сзади установлены также три одометрических колеса, которые работают в системе измерения пройденной дистанции и выдачи сигналов опроса датчиков. В приборах, предназначенных для трубопроводов диаметром 820 мм и менее, электроника размещена в нескольких секциях.

Специальная аппаратура, входящая в состав дефектоскопа, регистрирует сигналы датчиков во время движения дефектоскопа. Магнитный дефектоскоп способен обнаруживать не только дефекты в стенке трубы и поперечных швах, но и металлические предметы, расположенные вблизи внешней поверхности трубы: муфты, кожухи и т.п.

Магнитный  дефектоскоп высокого  и  сверхвысокого  разрешения с поперечным намагничиванием (TFI)

Кроме всемирно известной технологии утечки магнитного потока продольного намагничивания (MFL) активно применяется технология поперечного намагничивания (TFI), которая является решением проблемы обнаружения продольных трещин в стенке трубы.

В отличие от дефектоскопов с продольным намагничиванием (MFL) дефектоскопы, построенные по технологии TFI, обнаруживают узкие продольно ориентированные дефекты, включая трещины в продольных сварных швах, продольную внешнюю коррозию, вызванную отслоением покрытия, а также такие непредсказуемые и, таким образом, критичные сочетания дефектов, как продольная риска во вмятине.

Надежное обнаружение продольно ориентированных дефектов может быть обеспечено только в том случае, если намагничивание трубопровода производится в направлении, перпендикулярном плоскости расположения дефектов.

Для реализации этого принципа была разработана магнитная система, которая позволяет намагничивать трубопровод в поперечном по отношению к продольной оси направлении. Магнитная система содержит несколько секторов, образованных постоянными магнитами и гибкими проволочными щетками. В промежутках между щетками расположены датчики для измерения магнитной индукции  (рис. 40).

Рис. 40. Магнитный дефектоскоп высокого и сверхвысокого разрешения

с поперечным намагничиванием  (TFI)

Технология TFI, а также высокие требования к точности определения размеров дефектов требуют применения датчиков сверхвысокого разрешения. 

Размещение отключающих устройств на газопроводах

Отключающие устройства на наружных газопроводах размещаются:

а) подземно - в грунте (бесколодезная установка) или в колодцах;

б) надземно - на специально обустроенных площадках (для подземных газопроводов), на стенах зданий, а также на надземных газопроводах, прокладываемых на опорах.

Подробнее...

Провод спутник. Особенности монтажа

Для прокладки подземных газопроводов сегодня широко используются полиэтиленовые трубы, пришедшие на смену стальным. Среди основных положительных свойств использования полиэтиленовых газопроводов можно выделить:

Подробнее...

Пересечения газопроводами естественных и искусственных преград

Переходы газопроводов через водные преграды предусматривают на основании данных гидрологических, инженерно-геологических и топографических изысканий с учетом условий эксплуатации существующих и строительства проектируемых мостов, гидротехнических сооружений, перспективных работ в заданном районе и экологии водоема.

Подробнее...

Подземный газопровод. Прокладка подземного газопровода

Минимальные расстояния по горизонтали от подземных газопроводов до зданий и сооружений принимаются в соответствии с требованиями СНиП 2.07.01, СНиП II-89, приведенными в приложении.

Расстояние от газопровода до наружных стенок колодцев и камер других подземных инженерных сетей следует принимать не менее 0,3 м (в свету) при условии соблюдения требований, предъявляемых к прокладке газопроводов в стесненных условиях на участках, где расстояние в свету от газопровода до колодцев и камер других подземных инженерных сетей менее нормативного расстояния для данной коммуникации.

Подробнее...

Полиэтиленовые газопроводы. Особенности технической эксплуатации полиэтиленовых газопроводов

Присоединение построенного газопровода следует выполнять по технологическим инструкциям или картам, разработанными в соответствии с настоящими Правилами, Требованиями промышленной безопасности систем распределения и потребления природных газов и другими нормативными документами и утвержденными в установленном порядке.

Подробнее...

Обследование газопровода

Техническое обследование газопроводов приборным методом

1. Подготовительные работы по приборному техническому обследованию подземных газопроводов

1.1. Операторы, проводящие приборное техническое обследование газопроводов, должны иметь маршрутные карты.

Подробнее...

Вибрационный метод контроля

Вибрационный метод контроля технического состояния машин (вибродиагностика) является одним из информативных и доступных методов диагностики. Применительно к оборудованию НПС вибродиагностика позволяет контролировать техническое состояние магистральных и подпорных насосных агрегатов в режиме постоянного слежения за уровнем вибрации, а также оценивать работоспособность вентиляторов, насосов систем охлаждения, маслоснабжения, отопления, откачки утечек и прочего оборудования путем периодического измерения и анализа параметров вибрации. На рис. 43 приведена типичная стационарная система контроля в реальном масштабе времени. 

Подробнее...

Акустико-эмиссионный контроль

Под акустической эмиссией (АЭ) понимается возникновение в среде упругих волн, вызванных изменением ее состояния под действием внешних или внутренних факторов. Акустико-эмиссионный метод основан на анализе этих волн. Целью АЭ контроля является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии.

Подробнее...

Ультразвуковые внутритрубные дефектоскопы

Физической основой ультразвуковой дефектоскопии является свойство ультразвуковых волн отражаться от несплошностей. Действие приборов ультразвукового контроля основано на посылке ультразвуковых импульсов и регистрации отраженных акустических эхо-сигналов или ослабленных сигналов (в случае нахождения приемника сигналов в акустической тени, созданной дефектом). Посылка ультразвуковых импульсов и прием ультразвуковых сигналов производится пьезоэлементами (пьезоэлектрическими преобразователями), преобразующими переменное электрическое поле в акустическое поле и наоборот.

Подробнее...

Навигационный снаряд

Получение всесторонних данных о состоянии трубопровода, объединение этих данных и проведение их анализа для формирования эффективной стратегии эксплуатации и обслуживания – вот цель комплексной диагностики. Оптимальным решением такой задачи является проведение внутритрубного обследования трубопровода с определением дефектов геометрии и выявлением трубных аномалий с последующим картографированием результатов обследования. Интеграция данных пространственного расположения и качественных характеристик трубопровода предоставляет широкие возможности для анализа текущего состояния трубопровода и обоснованного долговременного прогнозирования изменений. На рис. 32 показан навигационный снаряд.

Подробнее...